Categories
Foundation Generics iOS macOS Swift

Persistent reusable container for item collections in Swift

Let’s build a container where we can store collections of items conforming to a protocol. All the collections are identified by a case in enum. For making the container reusable, we’ll use protocols as requirements on keys and items in collections. Moreover, the container should be archivable and unarchivable.

Creating a reusable container

Container’s implementation wraps a dictionary and adds methods for conveniently adding an item for key. Key must implement Hashable and RawRepresentable: then it can be used in Dictionary and converting it to representation suitable for storing on disk.

Every item needs to implement ContainerItem protocol what requires to implement methods used when archiving and unarchiving the item. Thanks to Codable protocol in Swift, it is very simple to transform the item to data and back. ContainerItem provides default implementations for its own methods when the type is conforming to Codable. Therefore, when some type wants to implement ContainerItem, then it only needs to conform to ContainerItem and Codable and default implementations will do the rest.

final class Container<Key: Hashable & RawRepresentable> {
private var storage = [Key: [ContainerItem]]() {
didSet {
didChange()
}
}
init(content: [Key: [ContainerItem]] = [:]) {
storage = content
}
func add(_ item: ContainerItem, key: Key) {
if var current = storage[key] {
current.append(item)
storage[key] = current
}
else {
storage[key] = [item]
}
}
func items<T: ContainerItem>(forKey key: Key) -> [T] {
guard let all = storage[key] else { return [] }
return all as! [T]
}
var didChange: () -> Void = {}
}
protocol ContainerItem {
init?(jsonData: Data)
var jsonDataRepresentation: Data { get }
}
extension ContainerItem where Self: Codable {
init?(jsonData: Data) {
guard let object = try? JSONDecoder().decode(Self.self, from: jsonData) else { return nil }
self = object
}
var jsonDataRepresentation: Data {
return try! JSONEncoder().encode(self)
}
}
Reusable container storing collections of items

Archiving and unarchiving the container and it’s content

Let’s first extend the container with write method. As enum cases are used as keys in dictionary, then let’s implement write method for enums what have String as RawValue. (what should be a preferred way in this use case as its provides the most readable representation of the key). We can then map dictionary entries so that key is converted to String and value to array of JSON data objects. NSKeyedArchiver provides a simple way of storing Dictionary with archivable types (like String and array of Data).

For initialising the container from data on disk, we need to make sure that we convert JSON data back to the correct type. Therefore we can extend the container for this specific enum case and converting data back to the correct type. When using enums it is easy to switch over the possible cases and then converting list of data objects to list of known types.

struct EventItem: ContainerItem, Codable {
let date: Date
let title: String
let description: String
}
struct NoteItem: ContainerItem, Codable {
let text: String
}
enum CalendarKeys: String {
case homeEvents, workEvents, notes
}
extension Container where Key == CalendarKeys {
convenience init(contentsOfURL url: URL) throws {
let data = try Data(contentsOf: url)
let contents = try NSKeyedUnarchiver.unarchiveTopLevelObjectWithData(data) as! [Key.RawValue: [Data]]
let converted = contents.compactMap({ (keyValuePair) -> (Key, [ContainerItem])? in
guard let key = Key(rawValue: keyValuePair.key) else { return nil }
switch key {
case .homeEvents, .workEvents:
return (key, keyValuePair.value.compactMap({ EventItem(jsonData: $0) }))
case .notes:
return (key, keyValuePair.value.compactMap({ NoteItem(jsonData: $0) }))
}
})
self.init(content: Dictionary(uniqueKeysWithValues: converted))
}
}
extension Container where Key.RawValue == String {
func write(to url: URL) throws {
let converted = storage.map { (keyValuePair) -> (String, [Data]) in
return (keyValuePair.key.rawValue, keyValuePair.value.map({ $0.jsonDataRepresentation }))
}
let data = try NSKeyedArchiver.archivedData(withRootObject: Dictionary(uniqueKeysWithValues: converted), requiringSecureCoding: false)
try data.write(to: url, options: .atomicWrite)
}
}
Providing methods for archiving and unarchiving

Summary

Wrapping dictionary with another type can be useful inmany cases where we have a known list of keys. Specialising generic types is an efficient way of adding more features to it and keeping type information intact. Thanks to Codable protocol we were able to make types archivable and unarchivable.

let container = Container<CalendarKeys>()
let event1 = EventItem(date: Date(), title: "title1", description: "description1")
container.add(event1, key: .homeEvents)
let event2 = EventItem(date: Date(), title: "title2", description: "description2")
container.add(event2, key: .workEvents)
let note1 = NoteItem(text: "text3")
container.add(note1, key: .notes)
let homeEvents: [EventItem] = container.items(forKey: .homeEvents)
let workEvents: [EventItem] = container.items(forKey: .workEvents)
let notes: [NoteItem] = container.items(forKey: .notes)
let url = URL(fileURLWithPath: NSTemporaryDirectory()).appendingPathComponent("Test")
do {
try container.write(to: url)
}
catch {
print(error as NSError)
}
do {
let restoredContainer = try Container<CalendarKeys>(contentsOfURL: url)
let homeEvents: [EventItem] = restoredContainer.items(forKey: .homeEvents)
let workEvents: [EventItem] = restoredContainer.items(forKey: .workEvents)
let notes: [NoteItem] = restoredContainer.items(forKey: .notes)
print("Home events: ", homeEvents)
print("Work events: ", workEvents)
print("Notes: ", notes)
}
catch {
print(error as NSError)
}
Example usage of the container

If this was helpful, please let me know on Mastodon@toomasvahter or Twitter @toomasvahter. Feel free to subscribe to RSS feed. Thank you for reading.

Example

PersistentGenericContainer (Xcode 11.1)

Categories
Foundation iOS Swift UIKit

Embedding a view in UIScrollView on iOS

This time we are going to look into how to embed custom view in UIScrollView and setting up autolayout constraints for different scenarios.

Setting up view controller with scroll view

We’ll gonna create a new view controller what contains UIScrollView as it’s subview. UIScrollView will cover the whole view area. Everything is set up in code as it is easier to represent the steps needed. It is easy to use those steps and setting up constraints in interface builder.

override func loadView() {
self.view = UIView(frame: .zero)
let scrollView: UIScrollView = {
let scrollView = UIScrollView(frame: .zero)
scrollView.backgroundColor = .white
scrollView.translatesAutoresizingMaskIntoConstraints = false
return scrollView
}()
view.addSubview(scrollView)
NSLayoutConstraint.activate([
scrollView.leadingAnchor.constraint(equalTo: view.leadingAnchor),
scrollView.trailingAnchor.constraint(equalTo: view.trailingAnchor),
scrollView.topAnchor.constraint(equalTo: view.topAnchor),
scrollView.bottomAnchor.constraint(equalTo: view.bottomAnchor)
])
}
Adding scroll view to parent view

Case 1: Vertically scrollable view

Most common case is to have scroll view with vertically scrollable content. Embedded view’s leading, trailing, top and bottom layout anchors should be equal to scroll view’s content layout margin’s corresponding anchors. For making the view only scrollable in vertical axis, embedded view’s width should match with scroll view’s width. This is achieved by adding an extra width constraint to the embedded view. Width constraint should make the view width equal to scroll view’s width. When setting view’s up in interface builder, make sure to add at least one subview to the embedded view what has intrinsic content size (label, button etc) (also add constraints). Otherwise interface builder does not know what size the embedded view has.

let customView = CustomView(frame: .zero) // view with intrinsicContentSize
customView.translatesAutoresizingMaskIntoConstraints = false
scrollView.addSubview(customView)
NSLayoutConstraint.activate([
customView.leadingAnchor.constraint(equalTo: scrollView.contentLayoutGuide.leadingAnchor),
customView.trailingAnchor.constraint(equalTo: scrollView.contentLayoutGuide.trailingAnchor),
customView.topAnchor.constraint(equalTo: scrollView.contentLayoutGuide.topAnchor),
customView.bottomAnchor.constraint(equalTo: scrollView.contentLayoutGuide.bottomAnchor),
customView.widthAnchor.constraint(equalTo: scrollView.widthAnchor)
})
Vertically scrollable embedded view

Case 2: Horizontally scrollable view

Horizontally scrollable view follows the same setup except instead of width constraint, we’ll add height constraint instead. When setting up the height constraint, scroll view’s safeAreaLayoutGuide’s heightAnchor should be used. This layout guide ignores the portion of the view what is covered by navigation bars, tab bars, toolbars, and other views.

let customView = CustomView(frame: .zero) // view with intrinsicContentSize
customView.translatesAutoresizingMaskIntoConstraints = false
scrollView.addSubview(customView)
NSLayoutConstraint.activate([
customView.leadingAnchor.constraint(equalTo: scrollView.contentLayoutGuide.leadingAnchor),
customView.trailingAnchor.constraint(equalTo: scrollView.contentLayoutGuide.trailingAnchor),
customView.topAnchor.constraint(equalTo: scrollView.contentLayoutGuide.topAnchor),
customView.bottomAnchor.constraint(equalTo: scrollView.contentLayoutGuide.bottomAnchor),
customView.heightAnchor.constraint(equalTo: scrollView.safeAreaLayoutGuide.heightAnchor)
])
Horizontally scrollable embedded view

Case 3: Vertically and horizontally scrollable view

For making the embedded view to be scrollable in horizontal and vertical axis, we’ll only add leading, trailing, top and bottom constraints to scroll view’s contentLayoutGuide’s corresponding anchors. Embedded view should define intrinsicContentSize as this size is used by scroll view for knowing what size the view wants to be. This kind of layout is probably usable only for fixed size view’s. For example, building a custom grid view where the row and column count define the size of the view.

let customView = CustomView(frame: .zero) // view with intrinsicContentSize
customView.translatesAutoresizingMaskIntoConstraints = false
scrollView.addSubview(customView)
NSLayoutConstraint.activate([
customView.leadingAnchor.constraint(equalTo: scrollView.contentLayoutGuide.leadingAnchor),
customView.trailingAnchor.constraint(equalTo: scrollView.contentLayoutGuide.trailingAnchor),
customView.topAnchor.constraint(equalTo: scrollView.contentLayoutGuide.topAnchor),
customView.bottomAnchor.constraint(equalTo: scrollView.contentLayoutGuide.bottomAnchor)
])
Vertically and horizontally scrollable embedded view

Summary

We took a look on how to add constraints to embedded view in scroll view for getting a specific scrolling behaviour. In one sentence: leading, trailing, top, and bottom constraints to contentLayoutGuide and adding width or height constraint when necessary.

If this was helpful, please let me know on Mastodon@toomasvahter or Twitter @toomasvahter. Feel free to subscribe to RSS feed. Thank you for reading.

Example

UIScrollViewExample (Xcode 11.0)

Categories
Foundation iOS Swift

Replacing multiple text tokens in Swift

Let’s see how to replace multiple tokens in string. As an example problem to solve we will use this string:
The quick <color_1> <animal_1> jumps over the lazy <animal_2>

String extension for replacing tokens

Token’s format is < text _ numbers > what can be turned into regular expression: <[:alpha:]+_{1}[:digit:]+>.

We’ll extend string and add a function what takes in regular expression and closure responsible of providing replacement strings. For finding tokens, we’ll use NSRegularExpression and get all the matches in the string. Next step is to reverse enumerate matches and replace tokens. Reverse enumerating is required it ensures that token ranges are constant. If we would start replacing from the first match, then all the succeeding ranges should be shifted based on the length difference of all the preceding tokens and replacements. In this case reduce is convenient because we can enumerate all the matches and then mutating the copy of the initial string with very few lines. Another aspect to note is that NSRegularExpression uses NSRange instead of <a rel="noreferrer noopener" aria-label="RangeRange<String.Index>. Therefore we need to convert ranges from one type to another making sure character indexes match.
This function can now be used with custom logic when providing replacements. For example: we can have a simple mapping or even returning the same replacement string.

let text = "The quick <color_1> <animal_1> jumps over the lazy <animal_2>"
let replacementMap = ["<animal_1>": "fox", "<animal_2>": "dog", "<color_1>": "brown"]
extension String {
func replacingOccurrences(matchingPattern pattern: String, replacementProvider: (String) -> String?) -> String {
let expression = try! NSRegularExpression(pattern: pattern, options: [])
let matches = expression.matches(in: self, options: [], range: NSRange(startIndex..<endIndex, in: self))
return matches.reversed().reduce(into: self) { (current, result) in
let range = Range(result.range, in: current)!
let token = String(current[range])
guard let replacement = replacementProvider(token) else { return }
current.replaceSubrange(range, with: replacement)
}
}
}
let finalString1 = text.replacingOccurrences(matchingPattern: "<[:alpha:]+_{1}[:digit:]+>", replacementProvider: { replacementMap[$0] })
let finalString2 = text.replacingOccurrences(matchingPattern: "<[:alpha:]+_{1}[:digit:]+>", replacementProvider: { _ in "REPLACEMENT" })
print(text)
print(finalString1) // The quick brown fox jumps over the lazy dog
print(finalString2) // The quick REPLACEMENT REPLACEMENT jumps over the lazy REPLACEMENT
String extension replacing tokens matching a pattern.

Summary

When we would like to do multiple replacements in a string, then one of the approaches is to get all the replacement ranges and then reverse enumerating the ranges and making replacements. In this way we can avoid having complex code trying to adjust based on the length difference of the source and replacement string.

If this was helpful, please let me know on Mastodon@toomasvahter or Twitter @toomasvahter. Feel free to subscribe to RSS feed. Thank you for reading.

Categories
Swift SwiftUI

NavigationLink and presentationMode environment value property for dismissing a view in SwiftUI

How to navigate to a new view in SwiftUI and then dismissing it? Let’s set up a main view in NavigationView and NavigationLink for opening detail view. NavigationLink is a button triggering a navigation to a specified view. Detail view will contain a button for navigating back to the first view. But how do we dismiss presented detail view?

Reading environment and dismissing the detail view

SwiftUI provides a dynamic view property named Environment. It can be used for reading values from the view’s environment. Presentation mode is one of those values we can read. This is how we get access to PresentationMode structure what has isPresented property and function for dismissing the view. Therefore, we need to add dynamic view property to our detail view and then calling dismiss() when the button is tapped

import SwiftUI
struct ContentView: View {
var body: some View {
NavigationView {
VStack(spacing: 8) {
Text("Hello World")
NavigationLink("Go to Detail View", destination: DetailView())
}.navigationBarTitle(Text("View 1"))
}
}
}
Content shown in navigation view
import SwiftUI
struct DetailView: View {
@Environment(\.presentationMode) var presentationMode
var body: some View {
VStack(spacing: 8) {
Text("Detail view")
Button("Go Back", action: {
self.presentationMode.wrappedValue.dismiss()
})
}
}
}
Detail view with button for navigation back to the content view

Summary

SwiftUI has a dynamic view property Environment what we can use for getting more knowledge about the environment view is presented (locale, displayScale etc). One of the environment values is PresentationMode what we can use for dismissing the detail view.

If this was helpful, please let me know on Mastodon@toomasvahter or Twitter @toomasvahter. Feel free to subscribe to RSS feed. Thank you for reading.

Categories
iOS LinkPresentation macOS Swift UIKit

Loading URL previews using LinkPresentation framework in Swift

iOS and macOS got a new framework in WWDC’19 named LinkPresentation. LinkPresentation enables fetching URL previews.

Adding LPLinkView for presenting preview

LPLinkView is a view subclass meant for rendering LPLinkMetadata. LPLinkMetadata contains information about the link: title, icon, image, video.

import LinkPresentation
let linkView = LPLinkView(metadata: LPLinkMetadata())
linkView.translatesAutoresizingMaskIntoConstraints = false
stackView.insertArrangedSubview(linkView, at: 0)
Adding LPLinkView to stack view

Fetching previews with LPMetadataProvider

Instances of LPLinkMetadata are fetched using LPLinkMetadataProvider for a given url. LPLinkMetadata is conforming to NSSecureCoding what enables a way of converting it to Data and storing the metadata on disk. Next time we need metadata for this url, we can use a locally cached data instead. Archiving and unarchiving is done with help of NSKeyedArchiver and NSKeyedUnarchiver and in the example archived data is stored in UserDefaults. In real apps it makes sense to store the data in separate files instead and not polluting UserDefaults with preview data.

private let metadataStorage = MetadataStorage()
private lazy var metadataProvider = LPMetadataProvider()
private weak var linkView: LPLinkView?
@IBAction func loadPreview(_ sender: UIButton) {
if let text = textField.text, let url = URL(string: text) {
// Avoid fetching LPLinkMetadata every time and archieve it disk
if let metadata = metadataStorage.metadata(for: url) {
linkView?.metadata = metadata
return
}
metadataProvider.startFetchingMetadata(for: url) { [weak self] (metadata, error) in
if let error = error {
print(error)
}
else if let metadata = metadata {
DispatchQueue.main.async { [weak self] in
self?.metadataStorage.store(metadata)
self?.linkView?.metadata = metadata
}
}
}
}
}
Fetching and caching LPMetadata
struct MetadataStorage {
private let storage = UserDefaults.standard
func store(_ metadata: LPLinkMetadata) {
do {
let data = try NSKeyedArchiver.archivedData(withRootObject: metadata, requiringSecureCoding: true)
var metadatas = storage.dictionary(forKey: "Metadata") as? [String: Data] ?? [String: Data]()
while metadatas.count > 10 {
metadatas.removeValue(forKey: metadatas.randomElement()!.key)
}
metadatas[metadata.originalURL!.absoluteString] = data
storage.set(metadatas, forKey: "Metadata")
}
catch {
print("Failed storing metadata with error \(error as NSError)")
}
}
func metadata(for url: URL) -> LPLinkMetadata? {
guard let metadatas = storage.dictionary(forKey: "Metadata") as? [String: Data] else { return nil }
guard let data = metadatas[url.absoluteString] else { return nil }
do {
return try NSKeyedUnarchiver.unarchivedObject(ofClass: LPLinkMetadata.self, from: data)
}
catch {
print("Failed to unarchive metadata with error \(error as NSError)")
return nil
}
}
}
Local LPMetadata storage using UserDefaults as storage

Summary

LinkPresentation framework adds a easy way of fetching previews for web pages. It provides a LPLinkView class making it extremely easy to render the preview.

If this was helpful, please let me know on Mastodon@toomasvahter or Twitter @toomasvahter. Feel free to subscribe to RSS feed. Thank you for reading.

Example Project

LinkPresentationView (Xcode 11 GM)

Categories
Combine ImageIO iOS Swift SwiftUI

Animating GIFs and APNGs with CGAnimateImageAtURLWithBlock in SwiftUI

This year Apple added CGAnimateImageAtURLWithBlock and CGAnimateImageDataWithBlock for animating GIFs and APNGs on all the platforms to the ImageIO framework. We can pass in URL or data and get callbacks when animation changes the current frame. In Xcode 11 beta 7 implicit bridging to Swift is disabled for those APIs and therefore we need to create a small wrapper around it in Objective-C.

Creating ImageFrameScheduler for managing CGAnimateImageAtURLWithBlock in Objective-C

Calling CGAnimateImageAtURLWithBlock starts the animation immediately. When animation frame changes, the handler block is called with frame index, current animation frame image and stop argument. When setting stop to YES, we can stop the animation. With this in mind we can create ImageFrameScheduler what takes in URL and has methods for starting and stopping the animation. Then we can expose this class to Swift and use it for managing the animation.

#import <CoreGraphics/CoreGraphics.h>
#import <Foundation/Foundation.h>
NS_ASSUME_NONNULL_BEGIN
@interface ImageFrameScheduler: NSObject
– (instancetype)initWithURL:(NSURL *)imageURL;
@property (readonly) NSURL *imageURL;
– (BOOL)startWithFrameHandler:(void (^)(NSInteger, CGImageRef))handler;
– (void)stop;
@end
NS_ASSUME_NONNULL_END
#import "ImageFrameScheduler.h"
#import "ImageIO/CGImageAnimation.h" // Xcode 11 beta 7 – CGImageAnimation.h is not in umbrella header IOImage.h
@interface ImageFrameScheduler()
@property (readwrite) NSURL *imageURL;
@property (getter=isStopping) BOOL stopping;
@end
@implementation ImageFrameScheduler
– (instancetype)initWithURL:(NSURL *)imageURL {
if (self = [super init]) {
self.imageURL = imageURL;
}
return self;
}
– (BOOL)startWithFrameHandler:(void (^)(NSInteger, CGImageRef))handler {
__weak ImageFrameScheduler *weakSelf = self;
OSStatus status = CGAnimateImageAtURLWithBlock((CFURLRef)self.imageURL, nil, ^(size_t index, CGImageRef _Nonnull image, bool* _Nonnull stop) {
handler(index, image);
*stop = weakSelf.isStopping;
});
// See CGImageAnimationStatus for errors
return status == noErr;
}
– (void)stop {
self.stopping = YES;
}
@end

ImageAnimator conforming to ObservableObject in Swift

When updating views in SwiftUI, we can use ObservableObject protocol and @Published property wrapper what enables SwiftUI to get notified when the ObservableObject changes. This means that we need a model object written in Swift what stores our Objective-C class ImageFrameScheduler and exposes the current animation frame when animation is running. Whenever we update the property internally, property wrapper will take care of notifying SwiftUI to update the view.

import Combine
import UIKit
final class ImageAnimator: ObservableObject {
private let scheduler: ImageFrameScheduler
init(imageURL: URL) {
self.scheduler = ImageFrameScheduler(url: imageURL)
}
@Published var image: CGImage?
func startAnimating() {
let isRunning = scheduler.start { [weak self] (index, image) in
self?.image = image
}
if isRunning == false {
print("Failed animate image at url \(scheduler.imageURL)")
}
}
func stopAnimating() {
scheduler.stop()
}
}

ContentView displaying animation frames in SwiftUI

Integrating ImageAnimator with ContentView is now pretty straight-forward, we check if animation frame image is available and display it. Animation is started when SwiftUI appears and stopped when it disappears.

import SwiftUI
struct ContentView: View {
@ObservedObject var imageAnimator: ImageAnimator
var body: some View {
ZStack {
if imageAnimator.image != nil {
Image(imageAnimator.image!, scale: 1.0, label: Text("Gif"))
}
else {
Text("Paused")
}
}.onAppear {
self.imageAnimator.startAnimating()
}.onDisappear {
self.imageAnimator.stopAnimating()
}
}
}

Summary

Although CGAnimateImageAtURLWithBlock and CGAnimateImageDataWithBlock are not directly usable in Swift, we can get away from it by adding a simple wrapper class in Objective-C. ImageFrameScheduler could be used in non-SwiftUI views by updating UIImageView when frame changes. In SwiftUI, views can use ImageAnimator for storing the current animation frame and using @Published property wrapper for letting SwiftUI view to know when to refresh.

If this was helpful, please let me know on Mastodon@toomasvahter or Twitter @toomasvahter. Feel free to subscribe to RSS feed. Thank you for reading.

Example Project

AnimateImageData (Xcode 11b7)

Categories
Foundation iOS Swift

Property wrapper for validating email using NSDataDetector

Property wrappers allow property declaration to state what kind of property wrapper is used for implementing the property. We can use it for implementing transformations on properties like validating if string is email or not. This is what we will do: creating a property wrapper for email properties and validating emails using NSDataDetector. If value being set is email, we store it and if it is not, we set the property to nil instead.

Creating property wrapper

Property wrappers are types annotated with @propertyWrapper. The type needs to implement one property: wrappedValue. Emails are represented with strings, therefore our wrappedValue property is optional string. Optional is required, because string can contain invalid email and in that case we set the property to nil. Whenever we would like to use this property wrapper, we just need to add @EmailValidated in front of the property definition.

@propertyWrapper
struct EmailValidated {
private var value: String?
var wrappedValue: String? {
get {
return value
}
set {
value = {
guard let trimmedString = newValue?.trimmingCharacters(in: .whitespacesAndNewlines) else { return nil }
return validate(trimmedString)
}()
}
}
}

Validating email using NSDataDetector

Validating emails using regular expressions is not easy. Fortunately Apple provides API exactly for this: NSDataDetector. We can create an instance of NSDataDetector with specifying link as detected types. When matching emails, we use anchored option as we expect the string to only include email, nothing else. Anchored will tell the data detector to match starting with the first character. As firstMatch(in:options:range:) uses NSRange, we need to convert Swift’s range to NSRange because those ranges do not have one-to-one match. For this, we can use special NSRange initialiser taking Swift string and its range.

NSDataDetector represents links with URL, therefore we will see if match contains an URL and if URL’s scheme is mailto. If it is, we can extract the matched email and return it.

private func validate(_ emailString: String) -> String? {
let dataDetector = try! NSDataDetector(types: NSTextCheckingResult.CheckingType.link.rawValue)
// Finding matches in string
let range = NSRange(emailString.startIndex..<emailString.endIndex, in: emailString)
guard let match = dataDetector.firstMatch(in: emailString, options: .anchored, range: range) else { return nil }
guard let url = match.url else { return nil }
// Extracting email from the matched url
let absoluteString = url.absoluteString
guard let index = absoluteString.range(of: "mailto:") else { return nil }
return String(url.absoluteString.suffix(from: index.upperBound))
}
view raw Validate.swift hosted with ❤ by GitHub

Using EmailValidated property wrapper

For using the created property wrapper, all we need to do is to annotate property with @EmailValidated.

struct Contact {
var fullName: String
@EmailValidated var email: String?
}
var contact = Contact(fullName: "Toomas")
contact.email = "invalidemail"
print(contact.email as Any) // nil
contact.email = " test toomas@email.zz"
print(contact.email as Any) // nil
contact.email = "toomas@email.zz"
print(contact.email as Any) // Optional("toomas@email.zz")

Summary

We created a simple property wrapper for validating emails. We saw that creating a property wrapper for validating email with NSDataDetector requires only a little bit of code.

If this was helpful, please let me know on Mastodon@toomasvahter or Twitter @toomasvahter. Feel free to subscribe to RSS feed. Thank you for reading.

Example

EmailPropertyWrapper playground (Xcode 11b5)

Resources

Categories
Foundation iOS Swift

Key-value observing without NSObject and dynamic modifier in Swift

When writing code in Swift it is often needed to observe changes in other objects. We can use Apple’s key-value observation but it has some implications: requires to use NSObject and dynamic dispatch through Objective-C runtime. This time, let’s build a simple key-value observation in Swift what does not require to use NSObject at all. Although it is far from being as feature complete as Apple’s implementation, it delivers the basic use-case which is often all what we need.

Custom KeyValueObservable protocol

The approach we take here is defining a protocol, providing default implementations for all the functions. Then we can make any class to conform to this protocol, but as we need to store observation related information, then the class needs to define a property holding an instance of ObservationStore. Secondly, it is required to send key-value change notification manually using didChangeValue(for:).

Add observer function returns an instance of Observation what can be used for removing the added observation. If the observer does not need to be removed during the lifetime of the observer, it can be ignored. Observation is always cleaned up automatically next time any key value changes happen after observer is deallocated. This is due to the fact that observation handler captures observer weakly and during key-value changes, it is checked if the object is still alive or not.

protocol KeyValueObservable where Self: AnyObject {
/// Stores all the added observations.
var observationStore: ObservationStore<Self> { get }
/// Sends key-value change notification to all the observers for this key path.
func didChangeValue(for keyPath: PartialKeyPath<Self>)
/// Adds observer for key path and returns observation token.
/// – Note: Observation token is only useful if it is needed to remove observation before observer is deallocated. When observer is deallocated, then observation is removed when next key value change is handled.
@discardableResult func addObserver<Observer: AnyObject, Value>(_ observer: Observer,
keyPath: KeyPath<Self, Value>,
options: Observation.Options,
handler: @escaping (Observer, Value) -> Void) -> Observation
/// Removes added observation.
func removeObservation(_ observation: Observation)
}

Adding default implementations

When adding observer, we create an observation handler what captures self and observer weakly. Handler returns boolean, what tells if the handler is still valid or not. Handler is not valid when observer has been deallocated since the last change. Otherwise handler is valid and should not be removed automatically.

extension KeyValueObservable {
@discardableResult func addObserver<Observer: AnyObject, Value>(_ observer: Observer, keyPath: KeyPath<Self, Value>, options: Observation.Options, handler: @escaping (Observer, Value) -> Void) -> Observation {
let observation = Observation()
let observationHandler: (PartialKeyPath<Self>) -> Bool = { [weak self, weak observer] changedKeyPath in
guard let self = self else { return false }
guard let observer = observer else { return false }
guard changedKeyPath == keyPath else { return true }
handler(observer, self[keyPath: keyPath])
return true
}
observationStore.observationInfos[observation] = observationHandler
if options.contains(.initial) {
handler(observer, self[keyPath: keyPath])
}
return observation
}
func removeObservation(_ observation: Observation) {
observationStore.observationInfos.removeValue(forKey: observation)
}
func didChangeValue(for keyPath: PartialKeyPath<Self>) {
observationStore.observationInfos = observationStore.observationInfos.filter({ (_, handler) -> Bool in
return handler(keyPath)
})
}
}

Supporting objects to key-value observing

As mentioned before, ObservationStore is needed to added to every class conforming to KeyValueObservable protocol. It stores all the observations and restricts the access to modifying the observations directly from the observable class.

Observation is a simple struct containing an identifier and subtype defining the observation options. In this basic case, it just has initial option what assures handler is called immediately when adding an observer.

final class ObservationStore<T> {
fileprivate var observationInfos = [Observation: (PartialKeyPath<T>) -> Bool]()
var observations: [Observation] {
return observationInfos.map({ $0.key })
}
func removeAll() {
observationInfos.removeAll()
}
}
struct Observation: Hashable {
fileprivate let identifier = UUID()
struct Options: OptionSet {
let rawValue: Int
static let initial = Options(rawValue: 1 << 0)
}
}

Conforming to KeyValueObservable

In this small example a class Event conforms to KeyValueObservable and ViewController observers the title change and updates a label.

final class Event: KeyValueObservable {
let observationStore = ObservationStore<Event>()
var title: String = "Initial Title" {
didSet {
didChangeValue(for: \Event.title)
}
}
}
final class ViewController: UIViewController {
let event = Event()
@IBOutlet weak var label: UILabel!
override func viewDidLoad() {
super.viewDidLoad()
event.addObserver(self, keyPath: \.title, options: .initial) { (observer, title) in
observer.label.text = title
}
}
@IBAction func changeTitle(_ sender: Any) {
event.title = "New Title"
}
}
view raw Observing.swift hosted with ❤ by GitHub

Summary

This time we added basic support for observing key paths without using key-value observing APIs known already from Objective-C times. The added KeyValueObservable protocol is easy to add to existing classes but requires manually calling didChangeValue(for:) for every property change.

Inspiration came from Observers in Swift part 2 (Swift by Sundell).

If this was helpful, please let me know on Mastodon@toomasvahter or Twitter @toomasvahter. Feel free to subscribe to RSS feed. Thank you for reading.

Resources

Categories
Foundation iOS Swift UIKit

Displaying menus with UIContextMenuInteraction on iOS

iOS 13 added a new class named UIContextMenuInteraction what is used for attaching menus to views. When adding menu interaction to a view and user uses 3D Touch or long press gesture on devices not supporting it, a menu is presented alongside with the highlighted content view. Therefore depending on the available space, not all the menu items can fit into the menu.

Setting up UIContextMenuInteraction

UIContextMenuInteraction is initialised with a delegate. Delegate’s job is to create an instance of UIContextMenuConfiguration with provider block for creating a menu when needed. It also should be noted that delegate can return nil in what case no menu is shown.

let interaction = UIContextMenuInteraction(delegate: self)
imageView.addInteraction(interaction)
imageView.isUserInteractionEnabled = true

Creating UIMenus and UIActions

Action provider of UIContextMenuConfiguration is a function taking in suggested menu items and returning an instance of UIMenu. Suggested menu items are the ones provided by responders from responder chain. For example we could use it for sharing actions among multiple responders.

Every menu item is represented by UIAction or another UIMenu allowing to have nested menus. UIActions have title and optionally image and state icon if the state is on. In addition we can explicitly disable actions and set a destructive appearance.

extension ViewController: UIContextMenuInteractionDelegate {
func contextMenuInteraction(_ interaction: UIContextMenuInteraction, configurationForMenuAtLocation location: CGPoint) -> UIContextMenuConfiguration? {
let actionProvider: ([UIMenuElement]) -> UIMenu? = { _ in // menu elements from responder chain if any
// Creating actions…
let imageAction = UIAction(title: "Title (image)",
image: UIImage(systemName: "arkit"),
identifier: nil,
discoverabilityTitle: nil,
attributes: [],
state: .off,
handler: actionHandler)
let destructiveAction = UIAction(title: "Title (destructive)",
image: nil,
identifier: nil,
discoverabilityTitle: nil,
attributes: .destructive,
state: .off,
handler: actionHandler)
let submenu = UIMenu(title: "Submenu",
image: nil,
identifier: nil,
options: [],
children: [destructiveAction, disabledAction])
return UIMenu(title: "Optional Menu Title",
image: nil,
identifier: nil,
options: [],
children: [titleAction, imageAction, onDiscoverabilityTitleAction, submenu])
}
return UIContextMenuConfiguration(identifier: "my identifier" as NSCopying,
previewProvider: nil,
actionProvider: actionProvider)
}

Summary

Creating menus using UIContextMenuInteraction are easy to setup and they look like familiar NSMenu when building iOS app for macOS.

If this was helpful, please let me know on Mastodon@toomasvahter or Twitter @toomasvahter. Feel free to subscribe to RSS feed. Thank you for reading.

Example

UIContextMenu (Xcode 11 beta 4)

Categories
Swift SwiftUI UIKit Vision

Scanning text using SwiftUI and Vision on iOS

Apple’s Vision framework contains computer vision related functionality and with iOS 13 it can detect text on images as well. Moreover, Apple added a new framework VisionKit what makes it easy to integrate document scanning functionality. For demonstrating the usage of it, let’s build a simple UI what can present the scanner and display scanned text.

Cropping text area when scanning documents

Scanning text with Vision

VisionKit has VNDocumentCameraViewController and when presented, it allows scanning documents and cropping scanned documents. It uses delegate for publishing scanned documents via an instance of VNDocumentCameraScan. This object contains all the taken images (documents). Next, we can use VNImageRequestHandler in Vision for detecting text on those images.

final class TextRecognizer {
    let cameraScan: VNDocumentCameraScan
    
    init(cameraScan: VNDocumentCameraScan) {
        self.cameraScan = cameraScan
    }
    
    private let queue = DispatchQueue(label: "com.augmentedcode.scan", qos: .default, attributes: [], autoreleaseFrequency: .workItem)
    
    func recognizeText(withCompletionHandler completionHandler: @escaping ([String]) -> Void) {
        queue.async {
            let images = (0..<self.cameraScan.pageCount).compactMap({ self.cameraScan.imageOfPage(at: $0).cgImage })
            let imagesAndRequests = images.map({ (image: $0, request: VNRecognizeTextRequest()) })
            let textPerPage = imagesAndRequests.map { image, request -> String in
                let handler = VNImageRequestHandler(cgImage: image, options: [:])
                do {
                    try handler.perform([request])
                    guard let observations = request.results as? [VNRecognizedTextObservation] else { return "" }
                    return observations.compactMap({ $0.topCandidates(1).first?.string }).joined(separator: "\n")
                }
                catch {
                    print(error)
                    return ""
                }
            }
            DispatchQueue.main.async {            
                completionHandler(textPerPage)
            }
        }
    }
}

Presenting document scanner with SwiftUI

As VNDocumentCameraViewController is UIKit view controller we can’t directly present it in SwiftUI. For making this work, we’ll need to use a separate value type conforming to UIViewControllerRepresentable protocol. UIViewControllerRepresentable is the glue between SwiftUI and UIKit and enables us to present UIKit views. This protocol requires us to define the class of the view controller and then implementing makeUIViewController(context:) and updateUIViewController(_:context:). In addition, we’ll also create coordinator what is going to be VNDocumentCameraViewController’s delegate. SwiftUI uses UIViewRepresentableContext for holding onto the coordinator and managing the view controller updates behind the scenes. Our case is pretty simple, we just use completion handler for passing back scanned text or nil when it was closed or error occurred. No need to update the view controller itself, only to pass data from it back to SwiftUI.

struct ScannerView: UIViewControllerRepresentable {
    private let completionHandler: ([String]?) -> Void
    
    init(completion: @escaping ([String]?) -> Void) {
        self.completionHandler = completion
    }
    
    typealias UIViewControllerType = VNDocumentCameraViewController
    
    func makeUIViewController(context: UIViewControllerRepresentableContext<ScannerView>) -> VNDocumentCameraViewController {
        let viewController = VNDocumentCameraViewController()
        viewController.delegate = context.coordinator
        return viewController
    }
    
    func updateUIViewController(_ uiViewController: VNDocumentCameraViewController, context: UIViewControllerRepresentableContext<ScannerView>) {}
    
    func makeCoordinator() -> Coordinator {
        return Coordinator(completion: completionHandler)
    }
    
    final class Coordinator: NSObject, VNDocumentCameraViewControllerDelegate {
        private let completionHandler: ([String]?) -> Void
        
        init(completion: @escaping ([String]?) -> Void) {
            self.completionHandler = completion
        }
        
        func documentCameraViewController(_ controller: VNDocumentCameraViewController, didFinishWith scan: VNDocumentCameraScan) {
            print("Document camera view controller did finish with ", scan)
            let recognizer = TextRecognizer(cameraScan: scan)
            recognizer.recognizeText(withCompletionHandler: completionHandler)
        }
        
        func documentCameraViewControllerDidCancel(_ controller: VNDocumentCameraViewController) {
            completionHandler(nil)
        }
        
        func documentCameraViewController(_ controller: VNDocumentCameraViewController, didFailWithError error: Error) {
            print("Document camera view controller did finish with error ", error)
            completionHandler(nil)
        }
    }
}

ContentView is the main SwiftUI view presenting the content for our very simple UI with static text, button and scanned text. When pressing on the button, we’ll set isShowingScannerSheet property to true. As it is @State property, then this change triggers SwiftUI update and sheet modifier will take care of presenting ScannerView with VNDocumentCameraViewController. When view controller finishes, completion handler is called and we will update the text property and set isShowingScannerSheet to false which triggers tearing down the modal during the next update.

struct ContentView: View {
    private let buttonInsets = EdgeInsets(top: 8, leading: 16, bottom: 8, trailing: 16)
    
    var body: some View {
        VStack(spacing: 32) {
            Text("Vision Kit Example")
            Button(action: openCamera) {
                Text("Scan").foregroundColor(.white)
            }.padding(buttonInsets)
                .background(Color.blue)
                .cornerRadius(3.0)
            Text(text).lineLimit(nil)
        }.sheet(isPresented: self.$isShowingScannerSheet) { self.makeScannerView() }
    }
    
    @State private var isShowingScannerSheet = false
    @State private var text: String = ""
    
    private func openCamera() {
        isShowingScannerSheet = true
    }
    
    private func makeScannerView() -> ScannerView {
        ScannerView(completion: { textPerPage in
            if let text = textPerPage?.joined(separator: "\n").trimmingCharacters(in: .whitespacesAndNewlines) {
                self.text = text
            }
            self.isShowingScannerSheet = false
        })
    }
}

Summary

With the new addition of VisionKit and text recognition APIs, it is extremely easy to add support of scanning text using camera.

If this was helpful, please let me know on Mastodon@toomasvahter or Twitter @toomasvahter. Feel free to subscribe to RSS feed. Thank you for reading.

Example

VisionKitExample (Xcode 11)